Dividing Fractions!

It is important to understand what is happening when you multiply fractions. These models help to show what is happening.

These slides were prepared to help students see what is happening when fractions are divided.

Hopefully, by looking at the models, you will understand what it means to divide fractions or to have something be divided by a fraction.

Seeing Division
I have four cookies to share with four people. How many cookies does each person get?

Seeing Division
I have one cookie to share with two people. How many cookie parts does each person get?
$1 \div 2$ or $\frac{1}{2}$
$=1 / 2$ cookie parts

Seeing Division

I have four cookies to share with two people. How many cookies does each person get?

$4 \div 2$

$=2$ cookies each

Seeing Division

I have four cookies to share with eight people. How many cookies does each person get?
$\quad 4 \div 8$ or $\frac{4}{8}$
$=1 / 2$ cookie each

Seeing Division
I have one cookie to share with four people. How many cookie parts does each person get?
$1 \div 4$ or $\frac{1}{4}$
$=1 / 4$ cookie parts

Dividing (using just the numbers)

These slides were made to explain what to do "number-wise" when dividing fractions.	Reciprocal
Some of the slides will have something like this picture: This is showing that the number needs to be renamed as $12 / 1$. Any number over 1 means the same as itself.	When you flip the second fraction, you are writing that fraction's reciprocal. $\frac{3}{5} \longrightarrow \frac{5}{3}$
You have one-third of a pie. How many halves are in that third? Answer: 2/3 of a half pie	Example 2 $\frac{4}{5} \div \frac{4}{9} \quad$ Rewrite: $\quad \frac{4}{5} \times \frac{9}{4}$ $=\frac{36}{20} \div \frac{4}{4}=\frac{9}{5}=1 \frac{4}{5}$
Example 3	Example 4
$\begin{aligned} & \frac{12}{12} \div \frac{3}{5} \text { Rewrite: } \quad \frac{12}{1} \times \frac{5}{3} \\ & \text { rename } \\ & =\frac{60}{\substack{\uparrow \\ \text { reciprocal }}}=60 \div 3=\frac{20}{1}=20 \\ & \underset{\text { froduct }}{\uparrow}=20 \\ & \text { fraction as division } \end{aligned}$	$\frac{1}{6} \div \underset{\substack{\uparrow \\ \text { rename }}}{\frac{3}{4}} \text { Rewnite: } \frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$

To Divide

\checkmark Invert (flip over) the second number Multiply

$$
\frac{2}{5} \div \frac{3}{4}=\frac{2}{5} \times \frac{4}{3}=\frac{8}{15}
$$

Division

When working word problems, be careful what order you write the problem.
The thing being split, cut, sorted, shared, divided, or grouped goes first.
How many pieces or how big goes second.

Fran puts $51 / 3 \mathrm{lbs}$ of chocolate in $2 / 3 \mathrm{lb}$ containers. How many containers?
Chocolate is first as it is split.
Total divided by How Big is How Many.

$$
5 \frac{1}{3} \div \frac{2}{3}=\frac{16}{3} \times \frac{3}{2}=\frac{8}{1} \times \frac{1}{1}=8
$$

8 containers.
(1) $\frac{3}{4} \div 2 \frac{1}{5} \underset{\substack{1 \\ 4}}{\text { (2) } \frac{3}{4} \times \frac{11}{11}} \begin{aligned} & \begin{array}{l}\text { This slide is an example of working } \\ \text { through al of thestesp in a } \\ \text { division problem when there is a } \\ \text { mixed number. The mixed } \\ \text { number has to be changed to an } \\ \text { improper fraction. }\end{array} \\ & \text { (4) } \frac{3}{4} \times \frac{5}{11}=\frac{15}{44}\end{aligned}$

The following slides have word problems with the problem solved, step by step. The best way to use these slides is to read the problem, try to work it out on your own, then compare your solution with the slide's solution.

See where they are the same and where you might have made a mistake. Hopefully by the time you get to the last slide you won't be making any mistakes!

Miss Glover bought a block of cheddar cheese. The block weighed $1 / 4$ pounds. She cut the block up into 2 equal slices. What was the weight of each slice of cheese?

$$
\begin{aligned}
& 1 / 4 \div 2= \\
& 1 / 4 \div 2 / 1= \\
& 1 / 4 \times 1 / 2=1 / 8 \\
& \quad \text { pounds }
\end{aligned}
$$

